agentchat.contrib.graph_rag.falkor_graph_query_engine
FalkorGraphQueryEngine
class FalkorGraphQueryEngine()
This is a wrapper for Falkor DB KnowledgeGraph.
__init__
def __init__(name: str,
host: str = "127.0.0.1",
port: int = 6379,
username: str | None = None,
password: str | None = None,
model: str = "gpt-4-1106-preview",
schema: Schema | None = None)
Initialize a Falkor DB knowledge graph. Please also refer to https://github.com/FalkorDB/GraphRAG-SDK/blob/main/graphrag_sdk/kg.py
Arguments:
name
str - Knowledge graph name.host
str - FalkorDB hostname.port
int - FalkorDB port number.username
str|None - FalkorDB username.password
str|None - FalkorDB password.model
str - OpenAI model to use for Falkor DB to build and retrieve from the graph.schema
- Falkor DB knowledge graph schema (ontology), https://github.com/FalkorDB/GraphRAG-SDK/blob/main/graphrag_sdk/schema/schema.py If None, Falkor DB will auto generate a schema from the input docs.
init_db
def init_db(input_doc: List[Document] | None)
Build the knowledge graph with input documents.
query
def query(question: str,
n_results: int = 1,
**kwargs) -> FalkorGraphQueryResult
Query the knowledage graph with a question and optional message history.
Arguments:
-
question
- a human input question. -
n_results
- number of returned results. kwargs: -
messages
- a list of message history. -
Returns
- FalkorGraphQueryResult