Usage tracking with AutoGen
1. Use AutoGen’s OpenAIWrapper for cost estimation
The OpenAIWrapper
from autogen
tracks token counts and costs of your
API calls. Use the create()
method to initiate requests and
print_usage_summary()
to retrieve a detailed usage report, including
total cost and token usage for both cached and actual requests.
mode=["actual", "total"]
(default): print usage summary for non-caching completions and all completions (including cache).mode='actual'
: only print non-cached usage.mode='total'
: only print all usage (including cache).
Reset your session’s usage data with clear_usage_summary()
when
needed.
2. Track cost and token count for agents
We also support cost estimation for agents. Use
Agent.print_usage_summary()
to print the cost summary for the agent.
You can retrieve usage summary in a dict using
Agent.get_actual_usage()
and Agent.get_total_usage()
. Note that
Agent.reset()
will also reset the usage summary.
To gather usage data for a list of agents, we provide an utility
function autogen.gather_usage_summary(agents)
where you pass in a list
of agents and gather the usage summary.
3. Custom token price for up-to-date cost estimation
AutoGen tries to keep the token prices up-to-date. However, you can pass
in a price
field in config_list
if the token price is not listed or
up-to-date. Please creating an issue or pull request to help us keep the
token prices up-to-date!
Note: in json files, the price should be a list of two floats.
Example Usage:
{
"model": "gpt-3.5-turbo-xxxx",
"api_key": "YOUR_API_KEY",
"price": [0.0005, 0.0015]
}
Caution when using Azure OpenAI!
If you are using azure OpenAI, the model returned from completion doesn’t have the version information. The returned model is either ‘gpt-35-turbo’ or ‘gpt-4’. From there, we are calculating the cost based on gpt-3.5-turbo-0125: (0.0005, 0.0015) per 1k prompt and completion tokens and gpt-4-0613: (0.03, 0.06). This means the cost can be wrong if you are using a different version from azure OpenAI.
This will be improved in the future. However, the token count summary is accurate. You can use the token count to calculate the cost yourself.
Requirements
AutoGen requires Python>=3.8
:
pip install "pyautogen"
Set your API Endpoint
The
config_list_from_json
function loads a list of configurations from an environment variable or
a json file.
import autogen
from autogen import AssistantAgent, OpenAIWrapper, UserProxyAgent, gather_usage_summary
config_list = autogen.config_list_from_json(
"OAI_CONFIG_LIST",
filter_dict={
"model": ["gpt-3.5-turbo", "gpt-3.5-turbo-16k"], # comment out to get all
},
)
It first looks for environment variable “OAI_CONFIG_LIST” which needs to be a valid json string. If that variable is not found, it then looks for a json file named “OAI_CONFIG_LIST”. It filters the configs by tags (you can filter by other keys as well).
The config list looks like the following:
config_list = [
{
"model": "gpt-3.5-turbo",
"api_key": "<your OpenAI API key>",
"tags": ["gpt-3.5-turbo"],
}, # OpenAI API endpoint for gpt-3.5-turbo
{
"model": "gpt-35-turbo-0613", # 0613 or newer is needed to use functions
"base_url": "<your Azure OpenAI API base>",
"api_type": "azure",
"api_version": "2024-02-01", # 2023-07-01-preview or newer is needed to use functions
"api_key": "<your Azure OpenAI API key>",
"tags": ["gpt-3.5-turbo", "0613"],
}
]
You can set the value of config_list in any way you prefer. Please refer to this notebook for full code examples of the different methods.
OpenAIWrapper with cost estimation
client = OpenAIWrapper(config_list=config_list)
messages = [
{"role": "user", "content": "Can you give me 3 useful tips on learning Python? Keep it simple and short."},
]
response = client.create(messages=messages, cache_seed=None)
print(response.cost)
0.00020600000000000002
OpenAIWrapper with custom token price
# Adding price to the config_list
for i in range(len(config_list)):
config_list[i]["price"] = [
1,
1,
] # Note: This price is just for demonstration purposes. Please replace it with the actual price of the model.
client = OpenAIWrapper(config_list=config_list)
messages = [
{"role": "user", "content": "Can you give me 3 useful tips on learning Python? Keep it simple and short."},
]
response = client.create(messages=messages, cache_seed=None)
print("Price:", response.cost)
Price: 109
Usage Summary for OpenAIWrapper
When creating a instance of OpenAIWrapper, cost of all completions from
the same instance is recorded. You can call print_usage_summary()
to
checkout your usage summary. To clear up, use clear_usage_summary()
.
client = OpenAIWrapper(config_list=config_list)
messages = [
{"role": "user", "content": "Can you give me 3 useful tips on learning Python? Keep it simple and short."},
]
client.print_usage_summary() # print usage summary
No usage summary. Please call "create" first.
# The first creation
# By default, cache_seed is set to 41 and enabled. If you don't want to use cache, set cache_seed to None.
response = client.create(messages=messages, cache_seed=41)
client.print_usage_summary() # default to ["actual", "total"]
client.print_usage_summary(mode="actual") # print actual usage summary
client.print_usage_summary(mode="total") # print total usage summary
----------------------------------------------------------------------------------------------------
Usage summary excluding cached usage:
Total cost: 0.00023
* Model 'gpt-35-turbo': cost: 0.00023, prompt_tokens: 25, completion_tokens: 142, total_tokens: 167
All completions are non-cached: the total cost with cached completions is the same as actual cost.
----------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------
Usage summary excluding cached usage:
Total cost: 0.00023
* Model 'gpt-35-turbo': cost: 0.00023, prompt_tokens: 25, completion_tokens: 142, total_tokens: 167
----------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------
Usage summary including cached usage:
Total cost: 0.00023
* Model 'gpt-35-turbo': cost: 0.00023, prompt_tokens: 25, completion_tokens: 142, total_tokens: 167
----------------------------------------------------------------------------------------------------
# take out cost
print(client.actual_usage_summary)
print(client.total_usage_summary)
{'total_cost': 0.0002255, 'gpt-35-turbo': {'cost': 0.0002255, 'prompt_tokens': 25, 'completion_tokens': 142, 'total_tokens': 167}}
{'total_cost': 0.0002255, 'gpt-35-turbo': {'cost': 0.0002255, 'prompt_tokens': 25, 'completion_tokens': 142, 'total_tokens': 167}}
# Since cache is enabled, the same completion will be returned from cache, which will not incur any actual cost.
# So actual cost doesn't change but total cost doubles.
response = client.create(messages=messages, cache_seed=41)
client.print_usage_summary()
----------------------------------------------------------------------------------------------------
Usage summary excluding cached usage:
Total cost: 0.00023
* Model 'gpt-35-turbo': cost: 0.00023, prompt_tokens: 25, completion_tokens: 142, total_tokens: 167
Usage summary including cached usage:
Total cost: 0.00045
* Model 'gpt-35-turbo': cost: 0.00045, prompt_tokens: 50, completion_tokens: 284, total_tokens: 334
----------------------------------------------------------------------------------------------------
# clear usage summary
client.clear_usage_summary()
client.print_usage_summary()
No usage summary. Please call "create" first.
# all completions are returned from cache, so no actual cost incurred.
response = client.create(messages=messages, cache_seed=41)
client.print_usage_summary()
----------------------------------------------------------------------------------------------------
No actual cost incurred (all completions are using cache).
Usage summary including cached usage:
Total cost: 0.00023
* Model 'gpt-35-turbo': cost: 0.00023, prompt_tokens: 25, completion_tokens: 142, total_tokens: 167
----------------------------------------------------------------------------------------------------
Usage Summary for Agents
Agent.print_usage_summary()
will print the cost summary for the agent.Agent.get_actual_usage()
andAgent.get_total_usage()
will return the usage summary in a dict. When an agent doesn’t use LLM, they will return None.Agent.reset()
will reset the usage summary.autogen.gather_usage_summary
will gather the usage summary for a list of agents.
assistant = AssistantAgent(
"assistant",
system_message="You are a helpful assistant.",
llm_config={
"timeout": 600,
"cache_seed": None,
"config_list": config_list,
},
)
ai_user_proxy = UserProxyAgent(
name="ai_user",
human_input_mode="NEVER",
max_consecutive_auto_reply=1,
code_execution_config=False,
llm_config={
"config_list": config_list,
},
# In the system message the "user" always refers to the other agent.
system_message="You ask a user for help. You check the answer from the user and provide feedback.",
)
assistant.reset()
math_problem = "$x^3=125$. What is x?"
ai_user_proxy.initiate_chat(
assistant,
message=math_problem,
)
$x^3=125$. What is x?
--------------------------------------------------------------------------------
To find x, we need to take the cube root of 125. The cube root of a number is the number that, when multiplied by itself three times, gives the original number.
In this case, the cube root of 125 is 5 since 5 * 5 * 5 = 125. Therefore, x = 5.
--------------------------------------------------------------------------------
That's correct! Well done. The value of x is indeed 5, as you correctly found by taking the cube root of 125. Keep up the good work!
--------------------------------------------------------------------------------
Thank you! I'm glad I could help. If you have any more questions, feel free to ask!
--------------------------------------------------------------------------------
ChatResult(chat_id=None, chat_history=[{'content': '$x^3=125$. What is x?', 'role': 'assistant'}, {'content': 'To find x, we need to take the cube root of 125. The cube root of a number is the number that, when multiplied by itself three times, gives the original number.\n\nIn this case, the cube root of 125 is 5 since 5 * 5 * 5 = 125. Therefore, x = 5.', 'role': 'user'}, {'content': "That's correct! Well done. The value of x is indeed 5, as you correctly found by taking the cube root of 125. Keep up the good work!", 'role': 'assistant'}, {'content': "Thank you! I'm glad I could help. If you have any more questions, feel free to ask!", 'role': 'user'}], summary="Thank you! I'm glad I could help. If you have any more questions, feel free to ask!", cost={'usage_including_cached_inference': {'total_cost': 0.000333, 'gpt-35-turbo': {'cost': 0.000333, 'prompt_tokens': 282, 'completion_tokens': 128, 'total_tokens': 410}}, 'usage_excluding_cached_inference': {'total_cost': 0.000333, 'gpt-35-turbo': {'cost': 0.000333, 'prompt_tokens': 282, 'completion_tokens': 128, 'total_tokens': 410}}}, human_input=[])
ai_user_proxy.print_usage_summary()
print()
assistant.print_usage_summary()
Agent 'ai_user':
----------------------------------------------------------------------------------------------------
Usage summary excluding cached usage:
Total cost: 0.00011
* Model 'gpt-35-turbo': cost: 0.00011, prompt_tokens: 114, completion_tokens: 35, total_tokens: 149
All completions are non-cached: the total cost with cached completions is the same as actual cost.
----------------------------------------------------------------------------------------------------
Agent 'assistant':
----------------------------------------------------------------------------------------------------
Usage summary excluding cached usage:
Total cost: 0.00022
* Model 'gpt-35-turbo': cost: 0.00022, prompt_tokens: 168, completion_tokens: 93, total_tokens: 261
All completions are non-cached: the total cost with cached completions is the same as actual cost.
----------------------------------------------------------------------------------------------------
user_proxy = UserProxyAgent(
name="user",
human_input_mode="NEVER",
max_consecutive_auto_reply=2,
code_execution_config=False,
default_auto_reply="That's all. Thank you.",
)
user_proxy.print_usage_summary()
No cost incurred from agent 'user'.
print("Actual usage summary for assistant (excluding completion from cache):", assistant.get_actual_usage())
print("Total usage summary for assistant (including completion from cache):", assistant.get_total_usage())
print("Actual usage summary for ai_user_proxy:", ai_user_proxy.get_actual_usage())
print("Total usage summary for ai_user_proxy:", ai_user_proxy.get_total_usage())
print("Actual usage summary for user_proxy:", user_proxy.get_actual_usage())
print("Total usage summary for user_proxy:", user_proxy.get_total_usage())
Actual usage summary for assistant (excluding completion from cache): {'total_cost': 0.0002235, 'gpt-35-turbo': {'cost': 0.0002235, 'prompt_tokens': 168, 'completion_tokens': 93, 'total_tokens': 261}}
Total usage summary for assistant (including completion from cache): {'total_cost': 0.0002235, 'gpt-35-turbo': {'cost': 0.0002235, 'prompt_tokens': 168, 'completion_tokens': 93, 'total_tokens': 261}}
Actual usage summary for ai_user_proxy: {'total_cost': 0.0001095, 'gpt-35-turbo': {'cost': 0.0001095, 'prompt_tokens': 114, 'completion_tokens': 35, 'total_tokens': 149}}
Total usage summary for ai_user_proxy: {'total_cost': 0.0001095, 'gpt-35-turbo': {'cost': 0.0001095, 'prompt_tokens': 114, 'completion_tokens': 35, 'total_tokens': 149}}
Actual usage summary for user_proxy: None
Total usage summary for user_proxy: None
usage_summary = gather_usage_summary([assistant, ai_user_proxy, user_proxy])
usage_summary["usage_including_cached_inference"]
{'total_cost': 0.000333,
'gpt-35-turbo': {'cost': 0.000333,
'prompt_tokens': 282,
'completion_tokens': 128,
'total_tokens': 410}}